Wow it’s almost like the computer scientists were saying this from the start but were shouted over by marketing teams.
This! Capitalism is going to be the end of us all. OpenAI has gotten away with IP Theft, disinformation regarding AI and maybe even murder of their whistle blower.
When are people going to realize, in its current state , an LLM is not intelligent. It doesn’t reason. It does not have intuition. It’s a word predictor.
I don’t think the article summarizes the research paper well. The researchers gave the AI models simple-but-large (which they confusingly called “complex”) puzzles. Like Towers of Hanoi but with 25 discs.
The solution to these puzzles is nothing but patterns. You can write code that will solve the Tower puzzle for any size n and the whole program is less than a screen.
The problem the researchers see is that on these long, pattern-based solutions, the models follow a bad path and then just give up long before they hit their limit on tokens. The researchers don’t have an answer for why this is, but they suspect that the reasoning doesn’t scale.
OK, and? A car doesn’t run like a horse either, yet they are still very useful.
I’m fine with the distinction between human reasoning and LLM “reasoning”.
The guy selling the car doesn’t tell you it runs like a horse, the guy selling you AI is telling you it has reasoning skills. AI absolutely has utility, the guys making it are saying it’s utility is nearly limitless because Tesla has demonstrated there’s no actual penalty for lying to investors.
Then use a different word. “AI” and “reasoning” makes people think of Skynet, which is what the weird tech bros want the lay person to think of. LLMs do not “think”, but that’s not to say I might not be persuaded of their utility. But thats not the way they are being marketed.
It’s not just the memorization of patterns that matters, it’s the recall of appropriate patterns on demand. Call it what you will, even if AI is just a better librarian for search work, that’s value - that’s the new Google.
While a fair idea there are two issues with that even still - Hallucinations and the cost of running the models.
Unfortunately, it take significant compute resources to perform even simple responses, and these responses can be totally made up, but still made to look completely real. It’s gotten much better sure, but blindly trusting these things (Which many people do) can have serious consequences.
It’s all “one instruction at a time” regardless of high processor speeds and words like “intelligent” being bandied about. “Reason” discussions should fall into the same query bucket as “sentience”.
My impression of LLM training and deployment is that it’s actually massively parallel in nature - which can be implemented one instruction at a time - but isn’t in practice.
XD so, like a regular school/university student that just wants to get passing grades?
I see a lot of misunderstandings in the comments 🫤
This is a pretty important finding for researchers, and it’s not obvious by any means. This finding is not showing a problem with LLMs’ abilities in general. The issue they discovered is specifically for so-called “reasoning models” that iterate on their answer before replying. It might indicate that the training process is not sufficient for true reasoning.
Most reasoning models are not incentivized to think correctly, and are only rewarded based on their final answer. This research might indicate that’s a flaw that needs to be corrected before models can actually reason.
When given explicit instructions to follow models failed because they had not seen similar instructions before.
This paper shows that there is no reasoning in LLMs at all, just extended pattern matching.
I’m not trained or paid to reason, I am trained and paid to follow established corporate procedures. On rare occasions my input is sought to improve those procedures, but the vast majority of my time is spent executing tasks governed by a body of (not quite complete, sometimes conflicting) procedural instructions.
If AI can execute those procedures as well as, or better than, human employees, I doubt employers will care if it is reasoning or not.
Sure. We weren’t discussing if AI creates value or not. If you ask a different question then you get a different answer.
What confuses me is that we seemingly keep pushing away what counts as reasoning. Not too long ago, some smart alghoritms or a bunch of instructions for software (if/then) was officially, by definition, software/computer reasoning. Logically, CPUs do it all the time. Suddenly, when AI is doing that with pattern recognition, memory and even more advanced alghoritms, it’s no longer reasoning? I feel like at this point a more relevant question is “What exactly is reasoning?”. Before you answer, understand that most humans seemingly live by pattern recognition, not reasoning.
I think as we approach the uncanny valley of machine intelligence, it’s no longer a cute cartoon but a menacing creepy not-quite imitation of ourselves.
What statistical method do you base that claim on? The results presented match expectations given that Markov chains are still the basis of inference. What magic juice is added to “reasoning models” that allow them to break free of the inherent boundaries of the statistical methods they are based on?
Yeah these comments have the three hallmarks of Lemmy:
- AI is just autocomplete mantras.
- Apple is always synonymous with bad and dumb.
- Rare pockets of really thoughtful comments.
Thanks for being at least the latter.
Some AI researchers found it obvious as well, in terms of they’ve suspected it and had some indications. But it’s good to see more data on this to affirm this assessment.
Lots of us who has done some time in search and relevancy early on knew ML was always largely breathless overhyped marketing. It was endless buzzwords and misframing from the start, but it raised our salaries. Anything that exec doesnt understand is profitable and worth doing.
Ragebait?
I’m in robotics and find plenty of use for ML methods. Think of image classifiers, how do you want to approach that without oversimplified problem settings?
Or even in control or coordination problems, which can sometimes become NP-hard. Even though not optimal, ML methods are quite solid in learning patterns of highly dimensional NP hard problem settings, often outperforming hand-crafted conventional suboptimal solvers in computation effort vs solution quality analysis, especially outperforming (asymptotically) optimal solvers time-wise, even though not with optimal solutions (but “good enough” nevertheless). (Ok to be fair suboptimal solvers do that as well, but since ML methods can outperform these, I see it as an attractive middle-ground.)Machine learning based pattern matching is indeed very useful and profitable when applied correctly. Identify (with confidence levels) features in data that would otherwise take an extremely well trained person. And even then it’s just for the cursory search that takes the longest before presenting the highest confidence candidate results to a person for evaluation. Think: scanning medical data for indicators of cancer, reading live data from machines to predict failure, etc.
And what we call “AI” right now is just a much much more user friendly version of pattern matching - the primary feature of LLMs is that they natively interact with plain language prompts.
So, what your saying here is that the A in AI actually stands for artificial, and it’s not really intelligent and reasoning.
Huh.
The AI stands for Actually Indians /s
NOOOOOOOOO
SHIIIIIIIIIITT
SHEEERRRLOOOOOOCK
Extept for Siri, right? Lol
Apple Intelligence
What’s hilarious/sad is the response to this article over on reddit’s “singularity” sub, in which all the top comments are people who’ve obviously never got all the way through a research paper in their lives all trashing Apple and claiming their researchers don’t understand AI or “reasoning”. It’s a weird cult.
Fucking obviously. Until Data’s positronic brains becomes reality, AI is not actual intelligence.
AI is not A I. I should make that a tshirt.
It’s an expensive carbon spewing parrot.
It’s a very resource intensive autocomplete
deleted by creator
I think it’s important to note (i’m not an llm I know that phrase triggers you to assume I am) that they haven’t proven this as an inherent architectural issue, which I think would be the next step to the assertion.
do we know that they don’t and are incapable of reasoning, or do we just know that for x problems they jump to memorized solutions, is it possible to create an arrangement of weights that can genuinely reason, even if the current models don’t? That’s the big question that needs answered. It’s still possible that we just haven’t properly incentivized reason over memorization during training.
if someone can objectively answer “no” to that, the bubble collapses.
do we know that they don’t and are incapable of reasoning.
“even when we provide the algorithm in the prompt—so that the model only needs to execute the prescribed steps—performance does not improve”
That indicates that this particular model does not follow instructions, not that it is architecturally fundamentally incapable.
Not “This particular model”. Frontier LRMs s OpenAI’s o1/o3,DeepSeek-R, Claude 3.7 Sonnet Thinking, and Gemini Thinking.
The paper shows that Large Reasoning Models as defined today cannot interpret instructions. Their architecture does not allow it.
Most humans don’t reason. They just parrot shit too. The design is very human.
I hate this analogy. As a throwaway whimsical quip it’d be fine, but it’s specious enough that I keep seeing it used earnestly by people who think that LLMs are in any way sentient or conscious, so it’s lowered my tolerance for it as a topic even if you did intend it flippantly.
LLMs deal with tokens. Essentially, predicting a series of bytes.
Humans do much, much, much, much, much, much, much more than that.
No. They don’t. We just call them proteins.
Thata why ceo love them. When your job is 90% spewing bs a machine that does that is impressive
Yeah I’ve always said the the flaw in Turing’s Imitation Game concept is that if an AI was indistinguishable from a human it wouldn’t prove it’s intelligent. Because humans are dumb as shit. Dumb enough to force one of the smartest people in the world take a ton of drugs which eventually killed him simply because he was gay.
I think that person had to choose between the drugs or hard core prison of the 1950s England where being a bit odd was enough to guarantee an incredibly difficult time as they say in England, I would’ve chosen the drugs as well hoping they would fix me, too bad without testosterone you’re going to be suicidal and depressed, I’d rather choose to keep my hair than to be horny all the time
I’ve heard something along the lines of, “it’s not when computers can pass the Turing Test, it’s when they start failing it on purpose that’s the real problem.”
Yeah we’re so stupid we’ve figured out advanced maths, physics, built incredible skyscrapers and the LHC, we may as individuals be less or more intelligent but humans as a whole are incredibly intelligent