They were only able to receive signals from the bare minimum to achieve a solution (4 GPS and 1 Galileo). Their achieved accuracy was +/- 1.5km and +/- 2m/s. That is good enough in astronomic scales to get you to a planet, but it isn’t going to help failed landings or autonomous landings.
I don’t think there was any new tech involved, just a receiver put on a moon lander to see if it could detect signals. And this won’t really do anything for Mars for two reasons: 1) the signal strength would be too small for any reasonable antenna to detect GPS L1/L5 at Mars distances, and 2) the distance would make the geometry be unusable to trilaterate a solution… think about a triangle where two lengths are 100 million miles and the third length is 100 miles. That is a completely worthless geometry for trilateration of a position solution. Even if we could somehow detect a GPS signal at Mars, best case is we get atomic clock time.
They were only able to receive signals from the bare minimum to achieve a solution (4 GPS and 1 Galileo). Their achieved accuracy was +/- 1.5km and +/- 2m/s. That is good enough in astronomic scales to get you to a planet, but it isn’t going to help failed landings or autonomous landings.
I don’t think there was any new tech involved, just a receiver put on a moon lander to see if it could detect signals. And this won’t really do anything for Mars for two reasons: 1) the signal strength would be too small for any reasonable antenna to detect GPS L1/L5 at Mars distances, and 2) the distance would make the geometry be unusable to trilaterate a solution… think about a triangle where two lengths are 100 million miles and the third length is 100 miles. That is a completely worthless geometry for trilateration of a position solution. Even if we could somehow detect a GPS signal at Mars, best case is we get atomic clock time.